Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shu-Jiang Tu,* Jia-Ning Xu, Jin-Peng Zhang, Xiao-Tong Zhu and Qian Wang

Department of Chemistry, Xuzhou Normal University, Xuzhou 221116, People's Republic of China

Correspondence e-mail: laotu2001@263.net

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.046$
$w R$ factor $=0.127$
Data-to-parameter ratio $=12.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

2,6-Diamino-4-(4-methoxyphenyl)-1,4-dihydro-pyridine-3,5-dicarbonitrile N, N-dimethylformamide solvate

The title compound, $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O} \cdot \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$, was synthesized by the reaction of 4-methoxybenzaldehyde with malononitrile and ammonium acetate under microwave irradiation. The dihedral angle between the pyridine and benzene planes is 56.07 (8) ${ }^{\circ}$.

Comment

3,5-Dicyanopyridine derivatives exhibit a wide range of bioactivities, such as antifungal, insecticidal, herbicidal, miticidal, nematocidal and antimicrobial activity (Gante \& Lust, 1971). Some substituted 3,5-dicyanopyridines have recently been reported to exhibit a high conductance-type calciumactivated K-channel opening effect (Hirochika et al., 2003) and to be adenosine receptor-selective ligands (Rosentreter et al., 2002), which are useful in the treatment of many diseases. More importantly, they are also versatile intermediates in organic synthesis (Castedo et al., 1984). As a consequence, much attention has been paid to the synthesis of these derivatives during the past 50 years. We report here the crystal structure of the title compound, (I).

(I)

The 2,6-diamino-1,4-dihydropyridine-3,5-dicarbonitrile fragment of (I) (atoms C8-C14/N1-N5) is almost planar, with an r.m.s. deviation of $0.076 \AA$ (Fig. 1). The dihedral angle between the pyridine and benzene planes is $56.07(8)^{\circ}$.

The crystal packing shows that intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$, $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}, \quad \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 1) form a three-dimensional network (Fig. 2).

Experimental

Compound (I) was prepared by the reaction of 4-methoxybenzaldehyde (1 mmol) with malononitrile (2 mmol) and ammonium acetate (1 mmol) under microwave irradiation for 4 min (yield 95%; m.p. 573 K). Single crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol and N, N-dimethylformamide solution (5:1 v / v).

Received 22 November 2005 Accepted 30 November 2005 Online 7 December 2005

Figure 1
The structure (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O} \cdot \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$	$Z=2$
$M_{r}=338.37$	$D_{x}=1.272 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=6.9580$ (13) \AA	Cell parameters from 1237
$b=9.5297$ (18) \AA	reflections
$c=14.695$ (3) \AA	$\theta=2.3-25.6^{\circ}$
$\alpha=99.900$ (3) ${ }^{\circ}$	$\mu=0.09 \mathrm{~mm}^{-1}$
$\beta=102.505$ (3) ${ }^{\circ}$	$T=294$ (2) K
$\gamma=106.527(3)^{\circ}$	Plate, colourless
$V=883.1$ (3) \AA^{3}	$0.22 \times 0.18 \times 0.06 \mathrm{~mm}$
Data collection	
Bruker SMART CCD area-detector diffractometer	3087 independent reflections 1774 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.026$
Absorption correction: multi-scan	$\theta_{\text {max }}=25.0^{\circ}$
(SADABS; Sheldrick, 1996)	$h=-6 \rightarrow 8$
$T_{\text {min }}=0.976, T_{\text {max }}=0.995$	$k=-11 \rightarrow 11$
4506 measured reflections	$l=-14 \rightarrow 17$
Refinement	
Refinement on F^{2}	$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0527 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$	+ 0.1375P]
$w R\left(F^{2}\right)=0.127$	where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$S=1.00$	$(\Delta / \sigma)_{\text {max }}=0.001$
3087 reflections	$\Delta \rho_{\text {max }}=0.18$ e \AA^{-3}
245 parameters	$\Delta \rho_{\text {min }}=-0.20 \mathrm{e}^{\AA^{-3}}$

H atoms treated by a mixture of independent and constrained refinement

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 3 A \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.88(3)$	$2.07(3)$	$2.846(3)$	$147(2)$
$\mathrm{N} 3-\mathrm{H} 3 B \cdots \mathrm{~N} 4^{\text {ii }}$	$1.00(3)$	$2.04(3)$	$3.033(3)$	$168(2)$
$\mathrm{N} 5-\mathrm{H} 5 A \cdots \mathrm{~N}^{\text {iii }}$	$0.79(3)$	$2.45(3)$	$3.195(3)$	$158(2)$
$\mathrm{N} 5-\mathrm{H} 5 B \cdots \mathrm{O} 2^{\mathrm{iii}}$	$0.98(3)$	$2.13(3)$	$3.083(3)$	$166(2)$
$\mathrm{C} 6-\mathrm{H} 6 A \cdots \mathrm{~N}^{\text {iv }}$	0.93	2.59	$3.506(4)$	171
$\mathrm{C} 7-\mathrm{H} 7 A \cdots \mathrm{O}^{\mathrm{v}}$	0.93	2.58	$3.503(4)$	170
$\mathrm{C} 17-\mathrm{H} 17 A \cdots \mathrm{~N} 1^{\text {vi }}$	0.93	2.48	$3.288(4)$	145

Symmetry codes: (i) $x+1, y-1, z$; (ii) $-x+1,-y,-z+1$; (iii) $-x,-y+1,-z+1$; (iv) $x-1, y, z$; (v) $-x,-y+1,-z$; (vi) $x-1, y+1, z$.

Figure 2
The molecular packing of (I), viewed approximately along the c axis. Dashed lines indicate hydrogen bonds.

The H atoms of the amino groups were located in a difference Fourier map and refined isotropically $[\mathrm{N}-\mathrm{H}=0.79$ (3)-1.00 (3) A$]$. All other H atoms were placed in idealized positions and allowed to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances of 0.93 or $0.96 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms and $1.2 U_{\text {eq }}(\mathrm{C})$ for other H atoms.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

The authors thank the Natural Science Foundation of China (grant No. 20372057), the Key Laboratory of Organic Synthesis of Jiangsu Province, the College of Chemistry and Chemical Engineering, Suzhou University Open Foundation (grant No. JSK011), and the Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province (grant No. 01AXL 14) for financial support.

References

Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Castedo, L., Quintela, J. M. \& Riguera, R. (1984). Eur. J. Med. Chem. 19, 555557.

Gante, J. \& Lust, S. (1971). US Patent 3629270.
Hirochika, H., Ayako, M., Tomofumi, T., Toshio, O. \& Yusuke, H. (2003). Jpn. Patent 2003183254.
Rosentreter, U., Kraemer, T., Vaupel, A. \& Huebsch, J.-P. (2002). WO Patent 2002070520 A1.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

